Soal:
Menggunakan Metode TOPSIS
Sebuah PTS di Kota Medan, akan memberikan beasiswa kepada 5
orang mahasiswanya. Adapun syarat pemberian beasiswa tersebut, yaitu harus
memenuhi ketentuan berikut ini :
Syarat :
C1: Semester Aktif Perkuliahan (Attribut Keuntungan)
C2: IPK (Attribut Keuntungan)
C3: Penghasilan Orang Tua (Attribut Biaya)
C4: Aktif Berorganisasi (Attribut Keuntungan)
Untuk bobot W=[4,4,5,3]
Adapun mahasiswa yang menjadi alternatif dalam pemberian beasiswa yaitu :
Syarat :
C1: Semester Aktif Perkuliahan (Attribut Keuntungan)
C2: IPK (Attribut Keuntungan)
C3: Penghasilan Orang Tua (Attribut Biaya)
C4: Aktif Berorganisasi (Attribut Keuntungan)
Untuk bobot W=[4,4,5,3]
Adapun mahasiswa yang menjadi alternatif dalam pemberian beasiswa yaitu :
No
|
Nama
|
C1
|
C2
|
C3
|
C4
|
1
|
Joko
|
VI
|
3.7
|
1.850.000
|
Aktif
|
2
|
Widodo
|
VI
|
3.5
|
1.500.000
|
Aktif
|
3
|
Simamora
|
IV
|
3.8
|
1.350.000
|
Tidak Aktif
|
4
|
Susilawati
|
II
|
3.9
|
1.650.000
|
Tidak Aktif
|
5
|
Dian
|
II
|
3.6
|
2.300.000
|
Aktif
|
6
|
Roma
|
IV
|
3.3
|
2.250.000
|
Aktif
|
7
|
Hendro
|
VIII
|
3.4
|
1.950.000
|
Aktif
|
Untuk pembobotan yang digunakan bisa mengacu pada bobot di bawah ini :
C1:Semester Aktif Perkuliahan
Semester II --> 1
Semester IV --> 2
Semester VI --> 3
Semester VIII --> 4
C2: IPK
IPK 3.00 - 3.249 --> 1
IPK 3.25 - 3.499 --> 2
IPK 3.50 - 3.749 --> 3
IPK 3.75 - 3.999 --> 4
IPK 4.00 --> 5
C3: Penghasilan Orang Tua
1.000.000 --> 1
1.400.000 --> 2
1.800.000 --> 3
2.200.000 --> 4
2.600.000 --> 5
C4: Aktif Berorganisasi
Aktif --> 2
Tidak Aktif --> 1
- X1 = √(3^2+3^2+ 2^2+1^2+1^2+2^2+4^2 ) = √44 = 6,633
R11 = 3/6,633=0,4522 R51 = 1/6,633=0,1507
R21 = 3/6,633=0,4522 R61 = 2/6,633=0,3015
R31 = 2/6,633=0,3015 R71 = 4/6,633=0,6030
R41 = 1/6,633=0,1507
- X2 = √(3^2+3^2+ 4^2+4^2+3^2+2^2+2^2 ) = √67 = 8,185
R12 = 3/8,815=0,3665 R52 = 3/8,815=0,3665
R22 = 3/8,815=0,3665 R62 = 2/8,815=0,2443
R32 = 4/8,815=0,4886 R72 = 2/8,815=0,2443
R42 = 4/8,815=0,4886
- X3 = √(3^2+2^2+ 1^2+2^2+4^2+4^2+3^2 ) = √59 = 7,681
R13 = 3/7,681=0,3905 R53 = 2/7,681=0,5207
R23 = 2/7,681=0,2603 R63 = 2/7,681=0,5207
R33 = 1/7,681=0,1301 R73 = 3/7,681=0,3905
R43 = 2/7,681=0,2603
- X4 = √(2^2+2^2+ 1^2+1^2+2^2+2^2+2) = √22 = 4,690
R14 = 2/4,690=0,4264 R54 = 2/4,690=0,4264
R24 = 2/4,690=0,4264 R64 = 2/4,690=0,4264
R34 = 1/4,690=0,2132 R74 = 2/4,690=0,4264
R44 = 1/4,690=0,2132
0,4522 0,3665 0,3905 0,4264
0,4522 0,3665 0,2603 0,4264
0,3015 0,4886 0,1301 0,2132
R = 0,1507 0,4886 0,2603 0,2132
0,1507 0,3665 0,5207 0,4264
0,3015 0,2443 0,5207 0,4264
0,6030 0,2443 0,3905 0,4264
yij = wij rij w = [4,4,5,3]
y11 = 4(0,4522) = 1,8090 y13 = 5(0,3905)
= 1,9528
y21 = 4(0,4522) = 1,8090 y23 = 5(0,2603)
= 1,3018
y31 = 4(0,3015) = 1,2060 y33 = 5(0,1301)
= 0,6509
y41 = 4(0,1507) = 0,6030 y43 = 5(0,2603)
= 1,3018
y51 = 4(0,1507) = 0,6030 y53 = 5(0,5207)
= 2,6037
y61 = 4(0,3015) = 1,2060 y63 = 5(0,5207)
= 2,6037
y71 = 4(0,6030) = 2,4120 y73 = 5(0,3905)
= 1,9528
y12 = 4(0,3665) = 1,4660 y14 = 3(0,4264)
= 1,2792
y22 = 4(0,3665) = 1,4660 y24 = 3(0,4264)
= 1,2792
y32 = 4(0,4886) = 1,9547 y34 = 3(0,2132)
= 0,6396
y42 = 4(0,4886) = 1,9547 y44 = 3(0,2132)
= 0,6396
y52 = 4(0,3665) = 1,4660 y54 = 3(0,4264)
= 1,2792
y62 = 4(0,2443) = 0,9773 y64 = 3(0,4264)
= 1,2792
y72 = 4(0,2443) = 0,9773 y74 = 3(0,4264)
= 1,2792
1,8090 1,4660 1,9528 1,2792
1,8090 1,4660 1,3018 1,2792
1,2060 1,9547 0,6509 0,6396
R = 0,6030 1,9547 1,3018 0,6396
0,6030 1,4660 2,6037 1,2792
1,2060 0,9773 2,6037 1,2792
2,4120 0,9773 1,9528 1,2792
A+ A-
Y1+ = max 2,4120 Y1- = min 0,6030
Y2+ = max 1,9547 Y2-
= min 0,9773
Y3+ = min 0,6509 Y3-
= max 2,6037
Y4+ = max 1,2792 Y4-
= min 0,6396
Di-=√(∑_(j=1)^n▒〖(y_ij- y_(i^+ ) 〗 )^2 )
D1-=√((1,8090-0,6030)^2+ (1,4660-0,9773)^2+(1,9528-2,6037)^2+ (1,2792-0,6396)^2 )
= √2,5261 = 1,5893
D2-=√((1,8090-0,6030)^2+ (1,4660-0,9773)^2+(1,3018-2,6037)^2+ (1,2792-0,6396)^2 )
= √3,7973 = 1,9486
D3-=√((1,2060-0,6030)^2+ (1,9547-0,9773)^2+(0,6509-2,6037)^2+ (0,6396-0,6396)^2 )
= √5,1324 = 2,2654
D4-=√((0,6030-0,6030+ (1,9547-0,9773)^2+(1,3018-2,6037)^2+ (0,6396-0,6396)^2 )
= √2,6501 = 1,6279
D5-=√((0,6030-0,6030)^2+ (1,4660-0,9773)^2+(2,6037-2,6037)^2+ (1,2792-0,6396)^2 )
= √0,6478 = 0,8049
D6-=√((1,2060-0,6030)^2+ (0,9773-0,9773)^2+(2,6037-2,6037)^2+ (1,2792-0,6396)^2 )
= √0,7727 = 0,8790
D7-=√((2,4120-0,6030)^2+ (0,9773-0,9773)^2+(1,9528-2,6037)^2+ (1,2792-0,6396)^2 )
= √4,1055= 2,0262
Di+ =√(∑_(j=1)^n▒〖(y_ij- y_(i^+ ) 〗 )^2 )
D1+=√((1,8090-0,6030)^2+ (1,4660-1,9547)^2+(1,9528-0,6509)^2+ (1,2792-1,2792)^2 )
= √2,2973 = 1,5157
D2+=√((1,8090-2,4120)^2+ (1,4660-1,9547)^2+(1,3018-0,6509)^2+ (1,2792-1,2792)^2 )
= √1,0261 = 1,0130
D3+=√((1,2060-2,4120)^2+ (1,9547-1,9547)^2+(0,6509-0,6509)^2+ (0,6396-1,2792)^2 )
= √1,8636 = 1,3651
D4+=√((0,6030-2,4120)^2+ (1,9547-1,9547)^2+(1,3018-0,6509)^2+ (0,6396-1,2792)^2 )
= √4,1055 = 2,0262
D5+=√((0,6030-2,4120)^2+ (1,4660-1,9547)^2+(2,6037-0,6509)^2+ (1,2792-1,2792)^2 )
= √7,3250 = 2,7064
D6+=√((1,2060-2,4120)^2+ (0,9773-1,9547)^2+(2,6037-0,6509)^2+ (1,2792-1,2792)^2 )
= √6,2233 = 2,4946
D7+=√((2,4120-2,4120)^2+ (0,9773-1,9547)^2+(1,9528-0,6509)^2+ (1,2792-1,2792)^2 )
= √2,6501 = 1,627
D1-=√((1,8090-0,6030)^2+ (1,4660-0,9773)^2+(1,9528-2,6037)^2+ (1,2792-0,6396)^2 )
= √2,5261 = 1,5893
D2-=√((1,8090-0,6030)^2+ (1,4660-0,9773)^2+(1,3018-2,6037)^2+ (1,2792-0,6396)^2 )
= √3,7973 = 1,9486
D3-=√((1,2060-0,6030)^2+ (1,9547-0,9773)^2+(0,6509-2,6037)^2+ (0,6396-0,6396)^2 )
= √5,1324 = 2,2654
D4-=√((0,6030-0,6030+ (1,9547-0,9773)^2+(1,3018-2,6037)^2+ (0,6396-0,6396)^2 )
= √2,6501 = 1,6279
D5-=√((0,6030-0,6030)^2+ (1,4660-0,9773)^2+(2,6037-2,6037)^2+ (1,2792-0,6396)^2 )
= √0,6478 = 0,8049
D6-=√((1,2060-0,6030)^2+ (0,9773-0,9773)^2+(2,6037-2,6037)^2+ (1,2792-0,6396)^2 )
= √0,7727 = 0,8790
D7-=√((2,4120-0,6030)^2+ (0,9773-0,9773)^2+(1,9528-2,6037)^2+ (1,2792-0,6396)^2 )
= √4,1055= 2,0262
Di+ =√(∑_(j=1)^n▒〖(y_ij- y_(i^+ ) 〗 )^2 )
D1+=√((1,8090-0,6030)^2+ (1,4660-1,9547)^2+(1,9528-0,6509)^2+ (1,2792-1,2792)^2 )
= √2,2973 = 1,5157
D2+=√((1,8090-2,4120)^2+ (1,4660-1,9547)^2+(1,3018-0,6509)^2+ (1,2792-1,2792)^2 )
= √1,0261 = 1,0130
D3+=√((1,2060-2,4120)^2+ (1,9547-1,9547)^2+(0,6509-0,6509)^2+ (0,6396-1,2792)^2 )
= √1,8636 = 1,3651
D4+=√((0,6030-2,4120)^2+ (1,9547-1,9547)^2+(1,3018-0,6509)^2+ (0,6396-1,2792)^2 )
= √4,1055 = 2,0262
D5+=√((0,6030-2,4120)^2+ (1,4660-1,9547)^2+(2,6037-0,6509)^2+ (1,2792-1,2792)^2 )
= √7,3250 = 2,7064
D6+=√((1,2060-2,4120)^2+ (0,9773-1,9547)^2+(2,6037-0,6509)^2+ (1,2792-1,2792)^2 )
= √6,2233 = 2,4946
D7+=√((2,4120-2,4120)^2+ (0,9773-1,9547)^2+(1,9528-0,6509)^2+ (1,2792-1,2792)^2 )
= √2,6501 = 1,627
Vi = Di-/Di-+Di+
V2 = 1,9486/(1,9486+1,0130)=0,6579
V3 = 2,2654/(2,2654+1,3651)=0,6239
V4 = 1,6279/(1,6279+2,0262)=0,4455
V5 = 0,8049/(0,8049+2,7064)=0,2292
V6 = 0,8790/(0,8790+2,4946)=0,2605
V7 = 2,0262/(2,0262+1,6279)=0,5544
Berarti yang berhak mendapatkan Beasiswa yaitu V1, V2, V3, V4, dan V7
0 komentar:
Posting Komentar