0

QUIZ ONLINE

Minggu, 08 Juni 2014
Share this Article on :
Soal: Menggunakan Metode TOPSIS
Sebuah PTS di Kota Medan, akan memberikan beasiswa kepada 5 orang mahasiswanya. Adapun syarat pemberian beasiswa tersebut, yaitu harus memenuhi ketentuan berikut ini :

Syarat :
C1: Semester Aktif Perkuliahan (Attribut Keuntungan)
C2: IPK  (Attribut Keuntungan)
C3: Penghasilan Orang Tua  (Attribut Biaya)
C4: Aktif Berorganisasi (Attribut Keuntungan)

Untuk bobot W=[4,4,5,3]

Adapun mahasiswa yang menjadi alternatif dalam pemberian beasiswa yaitu :
No
Nama
C1
C2
C3
C4
1
Joko
VI
3.7
1.850.000
Aktif
2
Widodo
VI
3.5
1.500.000
Aktif
3
Simamora
IV
3.8
1.350.000
Tidak Aktif
4
Susilawati
II
3.9
1.650.000
Tidak Aktif
5
Dian
II
3.6
2.300.000
Aktif
6
Roma
IV
3.3
2.250.000
Aktif
7
Hendro
VIII
3.4
1.950.000
Aktif

Untuk pembobotan yang digunakan bisa mengacu pada bobot di bawah ini :

C1:Semester Aktif Perkuliahan
Semester II --> 1
Semester IV --> 2
Semester VI -->  3
Semester VIII -->  4

C2: IPK
IPK  3.00 - 3.249 --> 1
IPK  3.25 - 3.499 --> 2
IPK  3.50 - 3.749 --> 3
IPK  3.75 - 3.999 --> 4
IPK  4.00 --> 5
 
C3: Penghasilan Orang Tua 
1.000.000 --> 1
1.400.000 --> 2
1.800.000 --> 3
2.200.000 --> 4
2.600.000 --> 5

C4: Aktif Berorganisasi
Aktif --> 2
Tidak Aktif --> 1
Penyelesaian:

- X1 = √(3^2+3^2+ 2^2+1^2+1^2+2^2+4^2 )  = √44  = 6,633
R11 = 3/6,633=0,4522                  R51 = 1/6,633=0,1507
R21 = 3/6,633=0,4522                  R61 = 2/6,633=0,3015
R31 = 2/6,633=0,3015                  R71 = 4/6,633=0,6030
R41 = 1/6,633=0,1507

- X2 = √(3^2+3^2+ 4^2+4^2+3^2+2^2+2^2 )  = √67  = 8,185
R12 = 3/8,815=0,3665                  R52 = 3/8,815=0,3665   
R22 = 3/8,815=0,3665                  R62 = 2/8,815=0,2443   
R32 = 4/8,815=0,4886                  R72 = 2/8,815=0,2443
R42 = 4/8,815=0,4886

- X3 = √(3^2+2^2+ 1^2+2^2+4^2+4^2+3^2 )  = √59  = 7,681
R13 = 3/7,681=0,3905                  R53 = 2/7,681=0,5207
R23 = 2/7,681=0,2603                  R63 = 2/7,681=0,5207
R33 = 1/7,681=0,1301                  R73 = 3/7,681=0,3905                                            
R43 = 2/7,681=0,2603

- X4 = √(2^2+2^2+ 1^2+1^2+2^2+2^2+2)  = √22  = 4,690
R14 = 2/4,690=0,4264                  R54 =  2/4,690=0,4264
R24 = 2/4,690=0,4264                  R64 =  2/4,690=0,4264
R34 = 1/4,690=0,2132                  R74 =  2/4,690=0,4264                                            
R44 = 1/4,690=0,2132



0,4522             0,3665             0,3905             0,4264
0,4522             0,3665             0,2603             0,4264
0,3015             0,4886             0,1301             0,2132
R =      0,1507             0,4886             0,2603             0,2132
0,1507             0,3665             0,5207             0,4264
0,3015             0,2443             0,5207             0,4264
0,6030             0,2443             0,3905             0,4264 




yij = wij rij    w = [4,4,5,3]
y11 = 4(0,4522) = 1,8090                     y13 = 5(0,3905) = 1,9528        
y21 = 4(0,4522) = 1,8090                     y23 = 5(0,2603) = 1,3018
y31 = 4(0,3015) = 1,2060                     y33 = 5(0,1301) = 0,6509
y41 = 4(0,1507) = 0,6030                     y43 = 5(0,2603) = 1,3018
y51 = 4(0,1507) = 0,6030                     y53 = 5(0,5207) = 2,6037
y61 = 4(0,3015) = 1,2060                     y63 = 5(0,5207) = 2,6037
y71 = 4(0,6030) = 2,4120                     y73 = 5(0,3905) = 1,9528
           
y12 = 4(0,3665) = 1,4660                     y14 = 3(0,4264) = 1,2792        
y22 = 4(0,3665) = 1,4660                     y24 = 3(0,4264) = 1,2792
y32 = 4(0,4886) = 1,9547                     y34 = 3(0,2132) = 0,6396
y42 = 4(0,4886) = 1,9547                     y44 = 3(0,2132) = 0,6396
y52 = 4(0,3665) = 1,4660                     y54 = 3(0,4264) = 1,2792
y62 = 4(0,2443) = 0,9773                     y64 = 3(0,4264) = 1,2792
y72 = 4(0,2443) = 0,9773                     y74 = 3(0,4264) = 1,2792





1,8090             1,4660             1,9528             1,2792
1,8090             1,4660             1,3018             1,2792
1,2060             1,9547             0,6509             0,6396
R =      0,6030            1,9547             1,3018             0,6396
0,6030             1,4660             2,6037             1,2792
1,2060             0,9773             2,6037             1,2792
2,4120             0,9773             1,9528             1,2792
A+                                                                                                                 A-
Y1+ = max 2,4120                                 Y1- = min 0,6030
Y2+ = max 1,9547                                 Y2- = min 0,9773
Y3+ = min 0,6509                                  Y3- = max 2,6037
Y4+ = max 1,2792                                 Y4- = min 0,6396
Di-=√(∑_(j=1)^n▒〖(y_ij- y_(i^+ ) 〗 )^2 )
       

D1-=√((1,8090-0,6030)^2+ (1,4660-0,9773)^2+(1,9528-2,6037)^2+ (1,2792-0,6396)^2  )
= √2,5261 = 1,5893

D2-=√((1,8090-0,6030)^2+ (1,4660-0,9773)^2+(1,3018-2,6037)^2+ (1,2792-0,6396)^2  )
= √3,7973 = 1,9486

D3-=√((1,2060-0,6030)^2+ (1,9547-0,9773)^2+(0,6509-2,6037)^2+ (0,6396-0,6396)^2  )
= √5,1324 = 2,2654

D4-=√((0,6030-0,6030+ (1,9547-0,9773)^2+(1,3018-2,6037)^2+ (0,6396-0,6396)^2  )
= √2,6501 = 1,6279


D5-=√((0,6030-0,6030)^2+ (1,4660-0,9773)^2+(2,6037-2,6037)^2+ (1,2792-0,6396)^2  )
= √0,6478 = 0,8049

D6-=√((1,2060-0,6030)^2+ (0,9773-0,9773)^2+(2,6037-2,6037)^2+ (1,2792-0,6396)^2  )
= √0,7727 = 0,8790

D7-=√((2,4120-0,6030)^2+ (0,9773-0,9773)^2+(1,9528-2,6037)^2+ (1,2792-0,6396)^2  )
= √4,1055= 2,0262


Di+ =√(∑_(j=1)^n▒〖(y_ij- y_(i^+ ) 〗 )^2 )
       
D1+=√((1,8090-0,6030)^2+ (1,4660-1,9547)^2+(1,9528-0,6509)^2+ (1,2792-1,2792)^2  )
= √2,2973 = 1,5157

D2+=√((1,8090-2,4120)^2+ (1,4660-1,9547)^2+(1,3018-0,6509)^2+ (1,2792-1,2792)^2  )
= √1,0261 = 1,0130

D3+=√((1,2060-2,4120)^2+ (1,9547-1,9547)^2+(0,6509-0,6509)^2+ (0,6396-1,2792)^2  )
= √1,8636 = 1,3651

D4+=√((0,6030-2,4120)^2+ (1,9547-1,9547)^2+(1,3018-0,6509)^2+ (0,6396-1,2792)^2  )
= √4,1055 = 2,0262

D5+=√((0,6030-2,4120)^2+ (1,4660-1,9547)^2+(2,6037-0,6509)^2+ (1,2792-1,2792)^2  )
= √7,3250 = 2,7064

D6+=√((1,2060-2,4120)^2+ (0,9773-1,9547)^2+(2,6037-0,6509)^2+ (1,2792-1,2792)^2  )
= √6,2233 = 2,4946

D7+=√((2,4120-2,4120)^2+ (0,9773-1,9547)^2+(1,9528-0,6509)^2+ (1,2792-1,2792)^2  )
= √2,6501 = 1,627
Vi = Di-/Di-+Di+
 

V1 = 1,5893/(1,5893+1,5157)=0,5118
V2 = 1,9486/(1,9486+1,0130)=0,6579
V3 = 2,2654/(2,2654+1,3651)=0,6239
V4 = 1,6279/(1,6279+2,0262)=0,4455
V5 = 0,8049/(0,8049+2,7064)=0,2292
V6 = 0,8790/(0,8790+2,4946)=0,2605
V7 = 2,0262/(2,0262+1,6279)=0,5544

    Berarti yang berhak mendapatkan Beasiswa yaitu V1, V2, V3, V4, dan  V7


Artikel Terkait:

0 komentar:

Posting Komentar